Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Cell Rep ; 37(6): 109993, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758329

RESUMEN

Parvalbumin and somatostatin inhibitory interneurons gate information flow in discrete cortical areas that compute sensory and cognitive functions. Despite the considerable differences between areas, individual interneuron subtypes are genetically invariant and are thought to form canonical circuits regardless of which area they are embedded in. Here, we investigate whether this is achieved through selective and systematic variations in their afferent connectivity during development. To this end, we examined the development of their inputs within distinct cortical areas. We find that interneuron afferents show little evidence of being globally stereotyped. Rather, each subtype displays characteristic regional connectivity and distinct developmental dynamics by which this connectivity is achieved. Moreover, afferents dynamically regulated during development are disrupted by early sensory deprivation and in a model of fragile X syndrome. These data provide a comprehensive map of interneuron afferents across cortical areas and reveal the logic by which these circuits are established during development.


Asunto(s)
Corteza Cerebral/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/patología , Interneuronas/patología , Terminales Presinápticos/patología , Órganos de los Sentidos/patología , Sinapsis/patología , Animales , Corteza Cerebral/metabolismo , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas , Terminales Presinápticos/metabolismo , Virus de la Rabia/genética , Órganos de los Sentidos/metabolismo , Sinapsis/metabolismo
2.
J Neurochem ; 159(3): 512-524, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34338322

RESUMEN

Studies have verified that Fragile X mental retardation protein (FMRP), an RNA-binding protein, plays a potential role in the pathogenesis of formalin- and (RS)-3,5-dihydroxyphenylglycine-induced abnormal pain sensations. However, the role of FMRP in inflammatory pain has not been reported. Here, we showed an increase in FMRP expression in the spinal dorsal horn (SDH) in a rat model of inflammatory pain induced by complete Freund's adjuvant (CFA). Double immunofluorescence staining revealed that FMRP was mainly expressed in spinal neurons and colocalized with proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)]. After consecutive intrathecal injection of fragile X mental retardation 1 small interfering RNA for 3 days post-CFA injection, FMRP expression in the SDH was reduced, and CFA-induced hyperalgesia was decreased. In addition, the CFA-induced increase in spinal TNF-α and IL-6 production was significantly suppressed by intrathecal administration of fragile X mental retardation 1 small interfering RNA. Together, these results suggest that FMRP regulates TNF-α and IL-6 levels in the SDH and plays an important role in inflammatory pain.


Asunto(s)
Citocinas/biosíntesis , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Inflamación/genética , Inflamación/patología , Dolor/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Adyuvante de Freund , Hiperalgesia/inducido químicamente , Hiperalgesia/patología , Inyecciones Espinales , Interleucina-6/metabolismo , Masculino , Dolor/inducido químicamente , Dolor/genética , Células del Asta Posterior/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
3.
Mol Biol Rep ; 48(8): 6131-6143, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34327661

RESUMEN

In humans, the cytoplasmic FMR1 interacting protein (CYFIP) family is composed of CYFIP1 and CYFIP2. Despite their high similarity and shared interaction with many partners, CYFIP1 and CYFIP2 act at different points in cellular processes. CYFIP1 and CYFIP2 have different expression levels in human tissues, and knockout animals die at different time points of development. CYFIP1, similar to CYFIP2, acts in the WAVE regulatory complex (WRC) and plays a role in actin dynamics through the activation of the Arp2/3 complex and in a posttranscriptional regulatory complex with the fragile X mental retardation protein (FMRP). Previous reports have shown that CYFIP1 and CYFIP2 may play roles in posttranscriptional regulation in different ways. While CYFIP1 is involved in translation initiation via the 5'UTR, CYFIP2 may regulate mRNA expression via the 3'UTR. In addition, this CYFIP protein family is involved in neural development and maturation as well as in different neural disorders, such as intellectual disabilities, autistic spectrum disorders, and Alzheimer's disease. In this review, we map diverse studies regarding the functions, regulation, and implications of CYFIP proteins in a series of molecular pathways. We also highlight mutations and their structural effects both in functional studies and in neural diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Enfermedades Neurodegenerativas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Humanos , Enfermedades Neurodegenerativas/fisiopatología , Neurogénesis , Neuronas/metabolismo
4.
Hum Mol Genet ; 29(23): 3744-3756, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33084871

RESUMEN

Several X-linked neurodevelopmental disorders including Rett syndrome, induced by mutations in the MECP2 gene, and fragile X syndrome (FXS), caused by mutations in the FMR1 gene, share autism-related features. The mRNA coding for methyl CpG binding protein 2 (MeCP2) has previously been identified as a substrate for the mRNA-binding protein, fragile X mental retardation protein (FMRP), which is silenced in FXS. Here, we report a homeostatic relationship between these two key regulators of gene expression in mouse models of FXS (Fmr1 Knockout (KO)) and Rett syndrome (MeCP2 KO). We found that the level of MeCP2 protein in the cerebral cortex was elevated in Fmr1 KO mice, whereas MeCP2 KO mice displayed reduced levels of FMRP, implicating interplay between the activities of MeCP2 and FMRP. Indeed, knockdown of MeCP2 with short hairpin RNAs led to a reduction of FMRP in mouse Neuro2A and in human HEK-293 cells, suggesting a reciprocal coupling in the expression level of these two regulatory proteins. Intra-cerebroventricular injection of an adeno-associated viral vector coding for FMRP led to a concomitant reduction in MeCP2 expression in vivo and partially corrected locomotor hyperactivity. Additionally, the level of MeCP2 in the posterior cortex correlated with the severity of the hyperactive phenotype in Fmr1 KO mice. These results demonstrate that MeCP2 and FMRP operate within a previously undefined homeostatic relationship. Our findings also suggest that MeCP2 overexpression in Fmr1 KO mouse posterior cerebral cortex may contribute to the fragile X locomotor hyperactivity phenotype.


Asunto(s)
Corteza Cerebral/patología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/patología , Regulación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/fisiología , Fenotipo , Animales , Corteza Cerebral/metabolismo , Femenino , Síndrome del Cromosoma X Frágil/etiología , Síndrome del Cromosoma X Frágil/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Neuron ; 108(4): 659-675.e6, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113347

RESUMEN

Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Neuronas/fisiología , Oxitocina/fisiología , Conducta Social , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Noqueados , Apego a Objetos , Oxitocina/genética
6.
Mol Hum Reprod ; 26(10): 727-737, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777047

RESUMEN

The FMR1 gene contains a polymorphic CGG trinucleotide sequence within its 5' untranslated region. More than 200 CGG repeats (termed a full mutation) underlie the severe neurodevelopmental condition fragile X syndrome, while repeat lengths that range between 55 and 200 (termed a premutation) result in the conditions fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency (FXPOI). Premutations in FMR1 are the most common monogenic cause of premature ovarian insufficiency and are routinely tested for clinically; however, the mechanisms that contribute to the pathology are still largely unclear. As studies in this field move towards unravelling the molecular mechanisms involved in FXPOI aetiology, we review the evidence surrounding the two main theories which describe an RNA toxic gain-of-function mechanism, resulting in the loss of function of RNA-binding proteins, or a protein-based mechanism, where repeat-associated non-AUG translation leads to the formation of an abnormal polyglycine containing protein, called FMRpolyG.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Mutación/fisiología , Péptidos/genética , Péptidos/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN/metabolismo , Transducción de Señal/fisiología
7.
Gut ; 69(1): 133-145, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31409605

RESUMEN

OBJECTIVE: The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN: Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS: Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS: We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hepatitis Viral Animal/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/patología , Linfocitos T CD8-positivos/inmunología , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Muerte Celular/fisiología , Células Cultivadas , Colestasis/inmunología , Colestasis/metabolismo , Colestasis/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hepatitis Viral Animal/patología , Hepatitis Viral Animal/prevención & control , Hepatocitos/patología , Imidazoles/farmacología , Imidazoles/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Virus de la Coriomeningitis Linfocítica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología
8.
Cereb Cortex ; 30(1): 31-46, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30958540

RESUMEN

The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of comorbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GABAergic signaling, and an altered balance between excitation and inhibition has been hypothesized to underlie the clinical consequences of absence of the protein. Using Fmrp knockout mice, we studied an in vitro model of cortical microcircuitry and observed that the loss of FMRP largely affected the electrophysiological correlates of network development and maturation but caused less alterations in single-cell phenotypes. The loss of FMRP also caused a structural increase in the number of excitatory synaptic terminals. Using a mathematical model, we demonstrated that the combination of an increased excitation and reduced inhibition describes best our experimental observations during the ex vivo formation of the network connections.


Asunto(s)
Corteza Cerebral/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Modelos Neurológicos , Neuronas/fisiología , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Redes Neurales de la Computación , Vías Nerviosas/fisiopatología
9.
Cereb Cortex ; 30(3): 969-988, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31364704

RESUMEN

Fragile X syndrome (FXS) is a leading genetic cause of autism with symptoms that include sensory processing deficits. In both humans with FXS and a mouse model [Fmr1 knockout (KO) mouse], electroencephalographic (EEG) recordings show enhanced resting state gamma power and reduced sound-evoked gamma synchrony. We previously showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to these phenotypes by affecting perineuronal nets (PNNs) around parvalbumin (PV) interneurons in the auditory cortex of Fmr1 KO mice. However, how different cell types within local cortical circuits contribute to these deficits is not known. Here, we examined whether Fmr1 deletion in forebrain excitatory neurons affects neural oscillations, MMP-9 activity, and PV/PNN expression in the auditory cortex. We found that cortical MMP-9 gelatinase activity, mTOR/Akt phosphorylation, and resting EEG gamma power were enhanced in CreNex1/Fmr1Flox/y conditional KO (cKO) mice, whereas the density of PV/PNN cells was reduced. The CreNex1/Fmr1Flox/y cKO mice also show increased locomotor activity, but not the anxiety-like behaviors. These results indicate that fragile X mental retardation protein changes in excitatory neurons in the cortex are sufficient to elicit cellular, electrophysiological, and behavioral phenotypes in Fmr1 KO mice. More broadly, these results indicate that local cortical circuit abnormalities contribute to sensory processing deficits in autism spectrum disorders.


Asunto(s)
Corteza Auditiva/fisiopatología , Conducta Animal , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Neuronas/fisiología , Prosencéfalo/fisiopatología , Estimulación Acústica , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ritmo Gamma , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal
10.
Neurobiol Learn Mem ; 164: 107042, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31326533

RESUMEN

Fragile X Syndrome (FXS) is a leading cause of heritable intellectual disability and autism. Humans with FXS show anxiety, sensory hypersensitivity and impaired learning. The mechanisms of learning impairments can be studied in the mouse model of FXS, the Fmr1 KO mouse, using tone-associated fear memory paradigms. Our previous study reported impaired development of parvalbumin (PV) positive interneurons and perineuronal nets (PNN) in the auditory cortex of Fmr1 KO mice. A recent study suggested PNN dynamics in the auditory cortex following tone-shock association is necessary for fear expression. Together these data suggest that abnormal PNN regulation may underlie tone-fear association learning deficits in Fmr1 KO mice. We tested this hypothesis by quantifying PV and PNN expression in the amygdala, hippocampus and auditory cortex of Fmr1 KO mice following fear conditioning. We found impaired tone-associated memory formation in Fmr1 KO mice. This was paralleled by impaired learning-associated regulation of PNNs in the superficial layers of auditory cortex in Fmr1 KO mice. PV cell density decreased in the auditory cortex in response to fear conditioning in both WT and Fmr1 KO mice. Learning-induced increase of PV expression in the CA3 hippocampus was only observed in WT mice. We also found reduced PNN density in the amygdala and auditory cortex of Fmr1 KO mice in all conditions, as well as reduced PNN intensity in CA2 hippocampus. There was a positive correlation between tone-associated memory and PNN density in the amygdala and auditory cortex, consistent with a tone-association deficit. Altogether our studies suggest a link between impaired PV and PNN regulation within specific regions of the fear conditioning circuit and impaired tone memory formation in Fmr1 KO mice.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Auditiva/fisiología , Miedo/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Condicionamiento Clásico , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Interneuronas/fisiología , Masculino , Ratones Noqueados , Vías Nerviosas/fisiología , Parvalbúminas/metabolismo
11.
J Neurosci ; 39(23): 4595-4605, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940719

RESUMEN

An essential aspect of goal-directed decision-making is selecting actions based on anticipated consequences, a process that involves the orbitofrontal cortex (OFC) and potentially, the plasticity of dendritic spines in this region. To investigate this possibility, we trained male and female mice to nose poke for food reinforcers, or we delivered the same number of food reinforcers non-contingently to separate mice. We then decreased the likelihood of reinforcement for trained mice, requiring them to modify action-outcome expectations. In a separate experiment, we blocked action-outcome updating via chemogenetic inactivation of the OFC. In both cases, successfully selecting actions based on their likely consequences was associated with fewer immature, thin-shaped dendritic spines and a greater proportion of mature, mushroom-shaped spines in the ventrolateral OFC. This pattern was distinct from spine loss associated with aging, and we identified no effects on hippocampal CA1 neurons. Given that the OFC is involved in prospective calculations of likely outcomes, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for solidifying durable expectations. To investigate causal relationships, we inhibited the RNA-binding protein fragile X mental retardation protein (encoded by Fmr1), which constrains dendritic spine turnover. Ventrolateral OFC-selective Fmr1 knockdown recapitulated the behavioral effects of inducible OFC inactivation (and lesions; also shown here), impairing action-outcome conditioning, and caused dendritic spine excess. Our findings suggest that a proper balance of dendritic spine plasticity within the OFC is necessary for one's ability to select actions based on anticipated consequences.SIGNIFICANCE STATEMENT Navigating a changing environment requires associating actions with their likely outcomes and updating these associations when they change. Dendritic spine plasticity is likely involved, yet relationships are unconfirmed. Using behavioral, chemogenetic, and viral-mediated gene silencing strategies and high-resolution microscopy, we find that modifying action-outcome expectations is associated with fewer immature spines and a greater proportion of mature spines in the ventrolateral orbitofrontal cortex (OFC). Given that the OFC is involved in prospectively calculating the likely outcomes of one's behavior, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for maintaining durable expectations.


Asunto(s)
Anticipación Psicológica/fisiología , Espinas Dendríticas/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Recompensa , Animales , Condicionamiento Operante , Toma de Decisiones , Espinas Dendríticas/ultraestructura , Dependovirus/genética , Conducta Alimentaria , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/antagonistas & inhibidores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Técnicas de Silenciamiento del Gen , Genes Reporteros , Vectores Genéticos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Refuerzo en Psicología
12.
Neurobiol Learn Mem ; 165: 107000, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30797034

RESUMEN

Genome-wide association and whole exome sequencing studies from Autism Spectrum Disorder (ASD) patient populations have implicated numerous risk factor genes whose mutation or deletion results in significantly increased incidence of ASD. Behavioral studies of monogenic mutant mouse models of ASD-associated genes have been useful for identifying aberrant neural circuitry. However, behavioral results often differ from lab to lab, and studies incorporating both males and females are often not performed despite the significant sex-bias of ASD. In this study, we sought to investigate the simple, passive behavior of home-cage activity monitoring across multiple 24-h days in four different monogenic mouse models of ASD: Shank3b-/-, Cntnap2-/-, Pcdh10+/-, and Fmr1 knockout mice. Relative to sex-matched wildtype (WT) littermates, we discovered significant home-cage hypoactivity, particularly in the dark (active) phase of the light/dark cycle, in male mice of all four ASD-associated transgenic models. For Cntnap2-/- and Pcdh10+/- mice, these activity alterations were sex-specific, as female mice did not exhibit home-cage activity differences relative to sex-matched WT controls. These home-cage hypoactivity alterations differ from activity findings previously reported using short-term activity measurements in a novel open field. Despite circadian problems reported in human ASD patients, none of the mouse models studied had alterations in free-running circadian period. Together, these findings highlight a shared phenotype across several monogenic mouse models of ASD, outline the importance of methodology on behavioral interpretation, and in some genetic lines parallel the male-enhanced phenotypic presentation observed in human ASDs.


Asunto(s)
Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Actividad Motora/genética , Animales , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Cadherinas/genética , Cadherinas/fisiología , Ritmo Circadiano , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Protocadherinas , Factores Sexuales
13.
Brain Imaging Behav ; 13(4): 1128-1134, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30046972

RESUMEN

Fragile X-associated tremor ataxia syndrome is an inherited neurodegenerative disorder caused by premutation expansions (55-200 CGG repeats) of the FMR1 gene. There is accumulating evidence to suggest that early cognitive and brain imaging signs may be observed in some premutation carriers without motor signs of FXTAS, but few studies have examined the relationships between subcortical brain volumes and cognitive performance in this group. This study examined the relationships between caudate volume and select cognitive measures (executive function and information processing speed) in men at risk of developing FXTAS and controls with normal FMR1 alleles (<45 CGG repeats). The results showed that men with premutation alleles performed worse on measures of executive function and information processing speed, and had significantly reduced caudate volume, compared to controls. Smaller caudate volume in the premutation group was associated with slower processing speed. These findings provide preliminary evidence that early reductions in caudate volume may be associated with cognitive slowing in men with the premutation who do not present with cardinal motor signs of FXTAS. If confirmed in future studies with larger PM cohorts, these findings will have important implications for the identification of sensitive measures with potential utility for tracking cognitive decline.


Asunto(s)
Ataxia/fisiopatología , Núcleo Caudado/fisiología , Cognición/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Temblor/fisiopatología , Adulto , Anciano , Alelos , Función Ejecutiva , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Frecuencia de los Genes/genética , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Factores de Riesgo , Expansión de Repetición de Trinucleótido/genética
14.
J Neurosci ; 39(1): 28-43, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389838

RESUMEN

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Potenciales de Acción/fisiología , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Transmisión Sináptica/fisiología
15.
Neurosci Res ; 146: 36-47, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30240639

RESUMEN

Fragile X mental retardation protein (FMRP), a causative gene (FMR1) product of Fragile X syndrome (FXS), is an RNA-binding protein to regulate local protein synthesis in dendrites for postsynaptic functions. However, involvement of FMRP in local protein synthesis in axons for presynaptic functions remains unclear. Here we investigated role of FMRP in local translation of the active zone protein Munc18-1 during presynapse formation. We found that leucine-rich repeat transmembrane neuronal 2 (LRRTM2)-conjugated beads, which promotes synchronized presynapse formation, induced simultaneous accumulation of FMRP and Munc18-1 in presynapses of axons of mouse cortical neurons in neuronal cell aggregate culture. The LRRTM2-induced accumulation of Munc18-1 in presynapses was observed in axons protein-synthesis-dependently, even physically separated from cell bodies. The accumulation of Munc18-1 was enhanced in Fmr1-knockout (KO) axons as compared to wild type (WT), suggesting FMRP-regulated suppression for local translation of Munc18-1 in axons during presynapse formation. Using naturally formed synapses of dissociated culture, structured illumination microscope revealed that accumulation of Munc18-1 puncta in Fmr1-KO neurons increased significantly at 19 days in vitro, as compared to WT. Our findings lead the possibility that excessive accumulation of Munc18-1 in presynapses at early stage of synaptic development in Fmr1-KO neurons may have a critical role in impaired presynaptic functions in FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Sinapsis/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral , Dendritas/metabolismo , Síndrome del Cromosoma X Frágil , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30173918

RESUMEN

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Asunto(s)
Cromatina/genética , Repeticiones de Microsatélite/fisiología , Expansión de Repetición de Trinucleótido/fisiología , Adulto , Encéfalo/citología , Encéfalo/patología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/fisiología , Línea Celular , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Islas de CpG/genética , Islas de CpG/fisiología , ADN/genética , Enfermedad/etiología , Enfermedad/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Genoma Humano/genética , Humanos , Masculino , Repeticiones de Microsatélite/genética , Expansión de Repetición de Trinucleótido/genética
17.
Science ; 361(6403): 709-712, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30115809

RESUMEN

Mutations in the fragile X mental retardation 1 gene (FMR1) cause the most common inherited human autism spectrum disorder. FMR1 influences messenger RNA (mRNA) translation, but identifying functional targets has been difficult. We analyzed quiescent Drosophila oocytes, which, like neural synapses, depend heavily on translating stored mRNA. Ribosome profiling revealed that FMR1 enhances rather than represses the translation of mRNAs that overlap previously identified FMR1 targets, and acts preferentially on large proteins. Human homologs of at least 20 targets are associated with dominant intellectual disability, and 30 others with recessive neurodevelopmental dysfunction. Stored oocytes lacking FMR1 usually generate embryos with severe neural defects, unlike stored wild-type oocytes, which suggests that translation of multiple large proteins by stored mRNAs is defective in fragile X syndrome and possibly other autism spectrum disorders.


Asunto(s)
Trastorno Autístico/metabolismo , Proteínas de Drosophila/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Malformaciones del Sistema Nervioso/genética , Biosíntesis de Proteínas , Animales , Trastorno Autístico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrión no Mamífero/anomalías , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Técnicas de Silenciamiento del Gen , Humanos , Oocitos , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Brain Res ; 1693(Pt A): 37-42, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29715444

RESUMEN

RNA binding proteins play essential roles during development and aging, and are also involved in disease pathomechanisms. RNA sequencing and omics analyses have provided a window into systems level alterations in neurological disease, and have identified RNA processing defects among notable disease mechanisms. This review focuses on two seemingly distinct neurological disorders, the RNA binding proteins they are linked to, and their newly discovered functional relationship. When deficient, Fragile X Mental Retardation Protein (FMRP) causes developmental deficits and autistic behaviors while TAR-DNA Binding Protein (TDP-43) dysregulation causes age dependent neuronal degeneration. Recent findings that FMRP and TDP-43 associate in ribonuclear protein particles and share mRNA targets in neurons highlight the critical importance of translation regulation in synaptic plasticity and provide new perspectives on neuronal vulnerability during lifespan.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Humanos , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Ribonucleoproteínas/metabolismo , Transducción de Señal
19.
Brain Res ; 1693(Pt A): 24-36, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29653083

RESUMEN

Research in the past decades has unfolded the multifaceted role of Fragile X mental retardation protein (FMRP) and how its absence contributes to the pathophysiology of Fragile X syndrome (FXS). Excess signaling through group 1 metabotropic glutamate receptors is commonly observed in mouse models of FXS, which in part is attributed to dysregulated translation and downstream signaling. Considering the wide spectrum of cellular and physiologic functions that loss of FMRP can affect in general, it may be advantageous to pursue disease mechanism based treatments that directly target translational components or signaling factors that regulate protein synthesis. Various FMRP targets upstream and downstream of the translational machinery are therefore being investigated to further our understanding of the molecular mechanism of RNA and protein synthesis dysregulation in FXS as well as test their potential role as therapeutic interventions to alleviate FXS associated symptoms. In this review, we will broadly discuss recent advancements made towards understanding the role of FMRP in translation regulation, new pre-clinical animal models with FMRP targets located at different levels of the translational and signal transduction pathways for therapeutic intervention as well as future use of stem cells to model FXS associated phenotypes.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Animales , Dendritas/metabolismo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica , Humanos , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , ARN Mensajero/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal
20.
Brain Res ; 1693(Pt A): 43-54, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29453961

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset inherited neurodegenerative disorder characterized by progressive intention tremor, gait ataxia and dementia associated with mild brain atrophy. The cause of FXTAS is a premutation expansion, of 55 to 200 CGG repeats localized within the 5'UTR of FMR1. These repeats are transcribed in the sense and antisense directions into mutants RNAs, which have increased expression in FXTAS. Furthermore, CGG sense and CCG antisense expanded repeats are translated into novel proteins despite their localization in putatively non-coding regions of the transcript. Here we focus on two proposed disease mechanisms for FXTAS: 1) RNA gain-of-function, whereby the mutant RNAs bind specific proteins and preclude their normal functions, and 2) repeat-associated non-AUG (RAN) translation, whereby translation through the CGG or CCG repeats leads to the production of toxic homopolypeptides, which in turn interfere with a variety of cellular functions. Here, we analyze the data generated to date on both of these potential molecular mechanisms and lay out a path forward for determining which factors drive FXTAS pathogenicity.


Asunto(s)
Ataxia/genética , Ataxia/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Temblor/genética , Temblor/fisiopatología , Regiones no Traducidas 5' , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Regulación de la Expresión Génica/genética , Humanos , Mutación , Enfermedades Neurodegenerativas/genética , Expansión de Repetición de Trinucleótido/genética , Expansión de Repetición de Trinucleótido/fisiología , Repeticiones de Trinucleótidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...